Your browser doesn't support javascript.
節目: 20 | 50 | 100
结果 1 - 19 de 19
过滤器
1.
biorxiv; 2023.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2023.11.04.565404

摘要

BackgroundCOVID-19 patients experience dynamic changes in immune and cellular function over time with potential clinical implications. However, there is insufficient research investigating, on a gene expression level, the mechanisms that become activated or suppressed over time as patients deteriorate or recover, which can inform use of repurposed and novel drugs as therapies. ObjectiveTo investigate longitudinal changes in gene expression profiles throughout the COVID-19 disease timeline. MethodsThree-hundred whole blood samples from 128 adult patients were collected during hospitalization from COVID-19, with up to five samples per patient. Transcriptome sequencing (RNA-Seq), differential gene expression analysis and pathway enrichment was performed. Drug-gene set enrichment analysis was used to identify FDA-approved medications that could inhibit critical genes and proteins at each disease phase. Prognostic gene-expression signatures were generated using machine learning to distinguish 3 disease stages. ResultsSamples were longitudinally grouped by clinical criteria and gene expression into six disease phases: Mild, Moderate, Severe, Critical, Recovery, and Discharge. Distinct mechanisms with differing trajectories during COVID-19 hospitalization were apparent. Antiviral responses peaked early in COVID-19, while heme metabolism pathways became active much later during disease. Adaptive immune dysfunction, inflammation, and metabolic derangements were most pronounced during phases with higher disease severity, while hemostatic abnormalities were elevated early and persisted throughout the disease course. Drug-gene set enrichment analysis predicted repurposed medications for potential use, including platelet inhibitors in early disease, antidiabetic medications for patients with increased disease severity, and dasatinib throughout the disease course. Disease phases could be categorized using specific gene signatures for prognosis and treatment selection. Disease phases were also highly correlated to previously developed sepsis endotypes, indicating that severity and disease timing were significant contributors to heterogeneity observed in sepsis and COVID-19. ConclusionsHigher temporal resolution of longitudinal mechanisms in COVID-19 revealed multiple immune and cellular changes that were activated at different phases of COVID-19. Understanding how a patients gene expression profile changes over time can permit more accurate risk stratification of patients and provide time-dependent personalized treatments with repurposed medications. This creates an opportunity for timely intervention before patients transition to a more severe phase, potentially accelerating patients to recovery.


主题 s
COVID-19
2.
medrxiv; 2023.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2023.06.14.23290814

摘要

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized COVID-19 patients. Integrated analysis using k-means reveal four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors are delineated by high and low antibody responses. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the Interferon paradox previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


主题 s
COVID-19 , Inflammation
3.
biorxiv; 2022.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2022.09.05.506622

摘要

Cellular immune defects associated with suboptimal responses to SARS-CoV-2 mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyzed antibody, B cell, CD4+ and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CI). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses and enhances comparatively more Thelper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (TNF/IL-2 skewing), while others (CCR6, CXCR6, PD-1 and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieve robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.

4.
medrxiv; 2022.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2022.08.03.22278386

摘要

The SARS-CoV-2 Omicron BA.4 and BA.5 subvariants have recently emerged, with BA.5 becoming the dominant circulating strain in many countries. Both variants share the same Spike glycoprotein sequence which contains a large number of mutations, raising concerns about vaccine efficacy. In this study, we evaluated the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize the BA.4/5 Spike. We observed that BA.4/5 Spike is markedly less recognized and neutralized compared to the D614G and Omicron BA.2 Spike variants. Individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2 naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against this subvariant.

5.
medrxiv; 2022.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2022.05.13.22275056

摘要

While SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTR) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung and heart). Compared to a cohort of SARS-CoV-2 naive immunocompetent health care workers (HCW), the second dose induced weak humoral responses in SOTR, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, while the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.


主题 s
Severe Acute Respiratory Syndrome
6.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.12.21.473679

摘要

Continuous emergence of SARS-CoV-2 variants of concern (VOC) is fueling the COVID-19 pandemic. Omicron (B.1.1.529), is rapidly spreading worldwide. The large number of mutations in its Spike raised concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses was shown to elicit antibodies that efficiently recognize Spikes from different VOCs. Here we evaluated the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously-infected individuals that received their BNT162b2 mRNA vaccine 16-weeks apart. Omicron Spike was recognized less efficiently than D614G, Alpha, Beta, Gamma and Delta Spikes. We compared to plasma activity from participants receiving a short (4-weeks) interval regimen. Plasma from individuals of the long interval cohort neutralized better the Omicron Spike compared to those that received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


主题 s
COVID-19
7.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.12.18.473317

摘要

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.

8.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264015

摘要

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.


主题 s
COVID-19
9.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.09.17.21263532

摘要

While the standard regimen of the BNT162b2 mRNA vaccine includes two doses administered three weeks apart, some public health authorities decided to space them, raising concerns about vaccine efficacy. Here, we analyzed longitudinal humoral responses including antibody binding, Fc-mediated effector functions and neutralizing activity against the D614G strain but also variants of concern and SARS-CoV-1 in a cohort of SARS-CoV-2 naive and previously infected individuals, with an interval of sixteen weeks between the two doses. While the administration of a second dose to previously infected individuals did not significantly improve humoral responses, we observed a significant increase of humoral responses in naive individuals after the 16-weeks delayed second shot, achieving similar levels as in previously infected individuals. Our results highlight strong vaccine-elicited humoral responses with an extended interval BNT162b2 vaccination for naive individuals.


主题 s
Severe Acute Respiratory Syndrome
10.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456258

摘要

IntroductionCOVID-19 vaccine efficacy has been evaluated in large clinical trials and in real-world situation. Although they have proven to be very effective in the general population, little is known about their efficacy in immunocompromised patients. HIV-infected individuals response to vaccine may vary according to the type of vaccine and their level of immunosuppression. We evaluated immunogenicity of an mRNA anti-SARS CoV-2 vaccine in HIV-positive individuals. MethodsHIV-positive individuals (n=121) were recruited from HIV clinics in Montreal and stratified according to their CD4 counts. A control group of 20 health care workers naive to SARS CoV-2 was used. The participants Anti-RBD IgG responses were measured by ELISA at baseline and 3 to 4 weeks after receiving the first dose of an mRNA vaccine). ResultsEleven of 121 participants had anti-COVID-19 antibodies at baseline, and a further 4 had incomplete data for the analysis. Mean anti-RBD IgG responses were similar between between the HIV negative control group (n=20) and the combined HIV+ group (n=106) (p = 0.72). However, these responses were significantly lower in the group with <250 CD4 cells/mm3. (p<0.0001). Increasing age was independently associated with decreased immunogenicity. ConclusionHIV-positive individuals with CD4 counts over 250 cells/mm3 have an anti-RBD IgG response similar to the general population. However, HIV-positive individuals with the lowest CD4 counts (<250 cells/mm3) have a weaker response. These data would support the hypothesis that a booster dose might be needed in this subgroup of HIV-positive individuals, depending on their response to the second dose.


主题 s
COVID-19 , HIV Infections
11.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.436337

摘要

Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We visualized sequential spread of virus from the nasal cavity to the lungs followed by systemic spread to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days of infection. In addition to direct neutralization, in vivo efficacy required Fc effector functions of NAbs, with contributions from monocytes, neutrophils and natural killer cells, to dampen inflammatory responses and limit immunopathology. Thus, our study highlights the requirement of both Fab and Fc effector functions for an optimal in vivo efficacy afforded by NAbs against SARS-CoV-2.


主题 s
COVID-19 , Death
12.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.03.18.21253907

摘要

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.


主题 s
Lung Diseases , Drug-Related Side Effects and Adverse Reactions , Death , COVID-19
13.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.03.18.435972

摘要

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naive individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4+ T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.

14.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.427846

摘要

SARS-CoV-2 mutations can impact infectivity, viral load, and overall morbidity/mortality during infection. In this analysis, we look at the mutational landscape of the SARS-CoV-2 receptor binding domain, a structure that is antigenic and allows for viral binding to the host. We analyze 104193 GISAID sequences acquired on October 15th, 2020 with a majority of sequences (96%) containing point mutations. We report high frequency mutations with improved binding affinity to ACE2 including S477N, N439K, V367F, and N501Y and address the potential impact of RBD mutations on antibody binding. The high frequency S477N mutation is present in 6.7% of all SARS-CoV-2 sequences, co-occurs with D614G, and is currently present in 14 countries. To address RBD-antibody interactions we take a subset of human derived antibodies and define their interacting residues using PDBsum. Our analysis shows that adaptive immunity against SARS-CoV-2 enlists broad coverage of the RBD suggesting that antibody mediated immunity should be sufficient to resolve infection in the presence of RBD point mutations that conserve structure.

15.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.428125

摘要

Advancing age and chronic health conditions, significant risk factors for severe COVID-19, are associated with a pro-inflammatory state, termed inflamm-aging. CXCR6+ T cells are known to traffic to the lung and have been reported to increase with age. The ligand of CXCR6, CXCL16, is constitutively expressed in the lung and upregulated during inflammatory responses and the CXCR6/CXCL16 axis is associated with severe lung disease and pneumonia. Genome-wide association studies have also recently identified 3p21.31, encompassing the CXCR6 gene, as a susceptibility locus for severe COVID-19. We assessed numbers T cells expressing the chemokine receptor CXCR6 and plasma levels of CXCL16, in control and COVID-19 patients. Results demonstrated that circulating CD8+CXCR6+ T cells were significantly elevated with advancing age, yet virtually absent in patients with severe COVID-19. Peripheral levels of CXCL16 were significantly upregulated in severe COVID-19 patients compared to either mild COVID-19 patients or SARS-CoV-2 negative controls. This study supports a significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19.


主题 s
Lung Diseases , Pneumonia , COVID-19
16.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.01.25.428097

摘要

Functional and lasting immune responses to the novel coronavirus (SARS-CoV-2) are currently under intense investigation as antibody titers in plasma have been shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we sought to determine the presence of SARS-CoV-2-specific memory B cells in COVID-19 convalescent patients. In this study, we report on the evolution of the overall humoral immune responses on 101 blood samples obtained from 32 COVID-19 convalescent patients between 16 and 233 days post-symptom onset. Our observations indicate that anti-Spike and anti-RBD IgM in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity in convalescent plasma declines rapidly compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which increase over time, and the number of IgG+ memory B cells which remain stable thereafter for up to 8 months after symptoms onset. With the recent approval of highly effective vaccines for COVID-19, data on the persistence of immune responses are of central importance. Even though overall circulating SARS-CoV-2 Spike-specific antibodies contract over time during convalescence, we demonstrate that RBD-specific B cells increase and persist up to 8 months post symptom onset. We also observe modest increases in RBD-specific IgG+ memory B cells and importantly, detectable IgG and sustained Fc-effector activity in plasma over the 8-month period. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for the prevention of secondary infections, vaccine efficacy and herd immunity against COVID-19.


主题 s
COVID-19
17.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427991

摘要

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths worldwide and massive societal and economic burden. Recently, a new variant of SARS-CoV-2, known as B.1.1.7, was first detected in the United Kingdom and is spreading in several other countries, heightening public health concern and raising questions as to the resulting effectiveness of vaccines and therapeutic interventions. We and others previously identified host-directed therapies with antiviral efficacy against SARS-CoV-2 infection. Less prone to the development of therapy resistance, host-directed drugs represent promising therapeutic options to combat emerging viral variants as host genes possess a lower propensity to mutate compared to viral genes. Here, in the first study of the full-length B.1.1.7 variant virus, we find two host-directed drugs, plitidepsin (aplidin; inhibits translation elongation factor eEF1A) and ralimetinib (inhibits p38 MAP kinase cascade), as well as remdesivir, to possess similar antiviral activity against both the early-lineage SARS-CoV-2 and the B.1.1.7 variant, evaluated in both human gastrointestinal and lung epithelial cell lines. We find that plitidepsin is over an order of magnitude more potent than remdesivir against both viruses. These results highlight the importance of continued development of host-directed therapeutics to combat current and future coronavirus variant outbreaks.


主题 s
Coronavirus Infections , COVID-19
18.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248642

摘要

Dysregulated immune profiles have been described in symptomatic SARS-CoV-2-infected patients. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of i) patients hospitalized with acute SARS-CoV-2 infection; ii) patients of comparable age/sex hospitalized for other acute disease (SARS-CoV-2 negative); and iii) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g. decreased proportion of T cells) that are similarly associated with acute SARS-CoV-2 infection and non-COVID-19 related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that are associated with SARS-CoV-2 status (e.g. elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days and mortality. Our data provides novel understanding of the immune dysregulation that are specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2+ patients at risk of unfavorable outcome and uncover novel candidate molecules to investigate from a therapeutic perspective.


主题 s
COVID-19
19.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20212092

摘要

Proteins detectable in peripheral blood may influence COVID-19 susceptibility or severity. However, understanding which circulating proteins are etiologically involved is difficult because their levels may be influenced by COVID-19 itself and also subject to confounding factors. To identify circulating proteins influencing COVID-19 susceptibility and severity we undertook a large-scale two-sample Mendelian randomization (MR) study, since this study design can rapidly scan hundreds of circulating proteins and reduces bias due to confounding and reverse causation. We began by identifying the genetic determinants of 955 circulating proteins in up to 10,708 SARS-CoV-2 uninfected individuals, retaining only single nucleotide polymorphisms near the gene encoded by the circulating protein. We then undertook an MR study to estimate the effect of these proteins on COVID-19 susceptibility and severity using the Host Genetics Initiative. We found that a standard deviation increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (N = 2,972 cases / 284,472 controls; OR = 0.48, P = 7x10-8), COVID-19 hospitalization (N = 6,492 / 1,012,809; OR = 0.60, P = 2x10-7) and COVID-19 susceptibility (N = 17,607 / 1,345,334; OR = 0.81, P = 6x10-5). Results were consistent despite multiple sensitivity analyses probing MR assumptions. OAS1 is an interferon-stimulated gene that promotes viral RNA degradation. Other potentially implicated proteins included IL10RB. Available medicines, such as interferon-beta-1b, increase OAS1 and could be explored for their effect on COVID-19 susceptibility and severity.


主题 s
COVID-19 , Death
搜索明细